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Abstract
We discuss an exactly solvable model for the creation of entanglement between
two subsystems by the observation of decay products. The system consists
of two identical decaying boson modes, and the decay channels are observed
through a beam splitter. For a reasonable class of initial states the decay
process is completely decoupled from the buildup of the relative phase. Exact
expressions are derived for the distribution over the two output channels, and
for the conditional density matrix after a given detection history.

PACS numbers: 42.50.Dv, 03.75.Fi, 42.50.Lc

1. Introduction

Entanglement is one of the several fundamental features of quantum mechanics, with no
classical counterpart. Two quantum systems in a pure state are entangled when the state
of the combined system cannot be factorized into product states pertaining to the separate
systems. The possibility of entanglement arises naturally from the superposition principle. In
the case of two spatially separated subsystems, entanglement is known to lead to measured
correlations between the subsystems that cannot be understood in terms of local properties
of each subsystem alone. One may be tempted to believe that for two systems to be in an
entangled state it is necessary that they share a common past. This is true for two particles
arising from a common source, or separating after a collision. Practical examples are two
photons created by parametric downconversion [1], or polarized atoms exiting their interaction
region. A slightly more involved possibility is that each system of an entangled pair has been
interacting with a common partner system. More fanciful possibilities have recently been
realized, where two entangled pairs of photons separate in such a way that two photons, one
out of each pair, are brought to interfere, leading to entanglement of the remaining two photons
[2]. In this paper we analyse the creation of entanglement between two decaying systems by
the detection of their decay products in interference. The two systems are modelled as boson
modes, and can be thought of as two single-mode radiation cavities or two Bose–Einstein
condensates. Particles emitted from the systems enter the two input ports of a beam splitter
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and detectors are attached to the output ports. Finite detection efficiencies are allowed for.
In the case of Bose–Einstein condensates, this is a situation where spontaneous symmetry
breaking gives rise to a relative phase between the condensates [3]. We consider a class of
initial states where the detection statistics and the resulting buildup of the relative phase during
a detection history can be solved analytically. The method is based on quantum trajectories,
generalized to include imperfect detection efficiency.

2. Single histories of decaying system

2.1. Perfect detection efficiency

The evolution of an open quantum system can often be described by a quantum master equation
for its density matrix ˆρ. The simplest form of this equation is [4]

d

dt
ρ̂ ≡ Lρ̂ = − i

h̄
[Ĥ , ρ̂] − 1

2
�(Ĉ

†
Ĉρ̂ + ρ̂Ĉ

†
Ĉ) + �Ĉρ̂Ĉ

†
(1)

where the operator̂C represents the effect of a quantum jump and� is a measure of the
jump rate. The last term in equation (1) describes the gain in the final state after quantum
jumps. In the prototype case of spontaneous emission, the operatorĈ is the lowering operator
of the atom, which transforms the excited state to the lower state. For a decaying mode of
the radiation field in a cavity,̂C = â represents the annihilation of a photon from the mode.
Quantum master equations are valid when the correlations of the outside world decay so
rapidly that within the decay time the state of the system does not change appreciably [5].

An initially pure state of the system cannot be expected to remain pure. Loss of information
to the outside world increases the entropy of the state. However, the density matrix ˆρ can
always be represented as an ensemble of time-dependent pure states, so that the density matrix
follows after ensemble averaging. This is the basis of the method of quantum trajectories
[6–8]. Each realization of the pure state of the system is specified by the precise specification
of the instants of time at which the quantum jumps occurred. The method is derived by
separating the evolution operatorL in equation (1) as

L = L0 + L1 (2)

with L1ρ̂ = �Ĉρ̂Ĉ
†

the gain term. Then equation (1) can be expressed as an integral equation

ρ̂(T ) = eL0T ρ̂(0) +
∫ T

0
dt eL0(T−t )L1ρ̂(t) (3)

which after iteration leads to a formal solution of the master equation in the form of an
expansion inL1. The integrand in each term can be viewed as a possible pure-state history
of the system with given instants of the jumps [9]. The first termˆ̃ρ0(T ) ≡ eL0T ρ̂(0) in (3)
represents that no jump occurred in the interval [0,T ]; the second term describes all histories
with the last jump at timet. The strength of the first termp0(T ) = Tr ˆ̃ρ0(T ) has the physical
significance of the probability that no jump occurred during the interval [0,T ]. The pure-state
single histories are convenient for numerical simulation of single runs of the evolution of open
quantum systems.

The integral equation (3) can also be used to derive the conditional density matrix for a
given history of the jumps. The situation that preciselyN jumps have occurred at the successive
time instantst1 � t2 � · · · � tN , within the count interval [0,T ], is described by the integrand
of the Nth iteration. The corresponding contribution to the total density matrix at timeT is
then

ˆ̃ρN(t1, t2, . . . , tN ; T ) = eL0(T−tN )L1eL0(tN−tN−1) . . .L1eL0t1ρ̂(0). (4)
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The corresponding normalized density matrix describes the conditional state of the system,
given this detection history. It can be written as the normalized versionˆ̃ρN/wN of (4), with

wN(t1, t2, . . . , tN ; T ) = Tr ˆ̃ρN(t1, t2, . . . , tN ; T ). (5)

The strength (5) represents the probability density for preciselyN jumps in the count interval
[0, T ] at the indicated time instants. The probabilitypN(T ) for N jumps in the count interval
is obtained after integration ofwN over the ordered time instantst1 � t2 � · · · � tN .

2.2. Imperfect detection efficiency

For our purposes we also need the statistics of detected jumps [10] in the case of imperfect
detection efficiency. The corresponding single histories of the evolution of the system can no
longer be expressed as pure-state evolution [11]. For simplicity we assume that the jumps are
detected with the uniform efficiencyη (0 � η � 1). We separate the evolution operatorL
as in equation (2), but we redefine the detection part asL1 = η�Ĉρ̂Ĉ

†
. The complementary

part of the gain term is included inL0. With this redefinition of the partial evolution operators
the integral equation (3) remains valid. However, the single histories now represent a specific
number ofdetected jumps. Undetected jumps still contribute toL0 to an amount 1− η, with
the result that single histories are no longer represented by pure states. In this case, equations
(4) and (5) give the density matrix and the probability density for a given number of detected
jumps at the indicated time instants. In the limiting case of full detection efficiencyη = 1, the
standard pure-state trajectories are recovered. In the opposite limiting case ofη = 0, there is
no difference between the solution of the full master equation (1) and the density matrixˆ̃ρ0(t)

during a detection-free period, sinceL = L0.

3. Decay of single boson mode

3.1. Arbitrary initial state

The topic of this paper is the interfering decay of two boson modes. In order to fix the
notation, we first discuss the quantum trajectories with limited detection efficiency in the case
of a single boson mode. Particles are leaking to the outside world, where they have a chance
η to be detected. The system can represent a mode of the radiation field or a Bose–Einstein
condensate. A single decaying system is described by the master equation [12]

d

dt
ρ̂ ≡ Lρ̂ = −iω[â†â, ρ̂] − 1

2
�(â†âρ̂ + ρ̂â†â) + �âρ̂â†. (6)

This is identical to equation (1), with the HamiltonianĤ = h̄ωâ†â, and with the jump operator
Ĉ = â replaced by the annihilation operator of a particle from the mode. We are interested
in the conditional density matrix corresponding to a specific detection history. The initial
density matrix ˆρ(0) can be expanded in coherent states|α〉 in terms of the Glauber–Sudarshan
P-function as [5]

ρ̂(0) =
∫

d2α |α〉〈α|P(α) (7)

where the integration extends over the complexα-plane. In order to findP we introduce the
characteristic function

χ(λ) = 〈eλâ†e−λ∗â〉 = Tr ρ̂(0) eλâ
†
e−λ∗â (8)
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so that knowledgeofχ as a function ofλdetermines the density matrix ˆρ. Then the distribution
functionP defined as the two-dimensional Fourier transform ofχ ,

P(α) = 1

π2

∫
d2λχ(λ) eλ

∗α−λα∗
(9)

determines ˆρ(0) as in (7). The functionP is real and normalized. On the other hand,P is not
necessarily positive definite, so one cannot interpret it as a probability distribution function. In
fact, when ˆρ(0) is a number state, the functionχ is a polynomial, so thatP contains derivatives
of a delta function. The possibly singular behaviour ofP presents no problems in the present
paper.

The representation (7) allows us to express the evolution of the total density matrix and
the state during a detection-free interval in terms of the evolution of coherent states. It is easy
to check that the total evolution of a coherent state described by the master equation (6) is
determined by the identity

eLT |α〉〈α| = |α(T )〉〈α(T )| (10)

with the time-dependent coherent state given byα(T ) = α exp[−(iω +�/2)T ]. For a
detection efficiencyη, the effect of a detection is described by the operatorL1ρ̂ = ηâρ̂â†.
This also defines the evolution operator for a detection-free time period asL0 ≡ L−L1. Since
obviouslyL1|α〉〈α| = η|α|2|α〉〈α|, the detection-free evolution of an initial coherent state is
given by

eL0T |α〉〈α| = exp(−η|α|2(1 − e−�T ))|α(T )〉〈α(T )|. (11)

Hence, the initial condition (7) gives the time-dependent solution

ρ̂(T ) =
∫

d2α |α(T )〉〈α(T )|P(α) (12)

whereas the contribution to the density matrix corresponding to a detection-free interval is

ˆ̃ρ0(T ) =
∫

d2α |α(T )〉〈α(T )|P(α) exp(−η|α|2(1 − e−�T )). (13)

The trace of (13) gives the zero-detection probability

p0(T ) =
∫

d2α P(α) exp(−η|α|2(1 − e−�T )). (14)

Since the coherent state|α〉 is eigenstate of the annihilation operator with eigenvalueα, the
effect of the detection of a particle as described byL1 can simply be accounted for. The
contribution (4) to the density matrix corresponding toN detections in the interval [0,T ] at
the instantst1 � t2 � · · · � tN is now easily evaluated, with the result

ˆ̃ρN(t1, t2, . . . , tN ; T ) =
∫

d2α |α(T )〉〈α(T )|

×P(α) exp(−η|α|2(1 − e−�T ))
N∏
i=1

(�η|α|2e−�ti ). (15)

The trace of (15) gives theN-fold probability densitywN(t1, t2, . . . , tN ; T ) for preciselyN
detections at the given instants of time, and the ratioˆ̃ρN/wN gives the conditional density
matrix, given thatN particles have been detected. After anN-fold integration ofwN over
the ordered time instants, one obtains the normalized probability distribution for preciselyN
detected particles in the interval [0,T ], with the result

pN(T ) =
∫

d2α P(α)
1

N !
(η|α|2(1 − e−�T ))N exp(−η|α|2(1 − e−�T )). (16)
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The distribution (16) has the form of the average of a Poisson distribution, with theP function
as the effective probability distribution over the coherent-state indexα. The mean value is

N̄ =
∫

d2α P(α)η|α|2(1 − e−�T ) (17)

which is determined by the time integral of the detection rateη�|α(t)|2. The probability
distributionpN can be sub-Poissonian, since the functionP(α) is not necessarily positive
definite. A sub-Poissonian distribution occurs when the difference between the variance and
the mean value ofN is negative. This difference is found in the form

�N2 − N̄ = η2(1 − e−�T )2
(∫

d2α P(α)|α|4 −
(∫

d2α P(α)|α|2
)2
)

(18)

which is negative when also the initial distribution of the number of particles in the mode is
sub-Poissonian.

3.2. Poisson distribution of particle numbers

The expressions simplify considerably when the functionP(α) is non-zero only for a single
value of |α|. Then the initial state is specified by the distribution over the phase of
α = r exp(−iφA). In equations (12)–(16) we can make the replacement

∫
d2α P(α) →∫

dφA gA(φA), with gA a normalized distribution over the phaseφA. The time-dependent
probability distribution over the number of particles in the mode is Poissonian, with mean
value〈n〉 = r2 exp(−�T ). In this case, theN-fold distribution function for detections at the
instantst1, t2, . . . , tN takes the simple form

wN(t1, t2, . . . , tN ; T ) = exp(−ηr2(1 − e−�T ))
N∏
i=1

(�ηr2e−�ti ). (19)

Since the detection probability is determined only by the value ofr, this distribution is
independent of the phase distribution. The corresponding contribution to the density matrix
(15) takes the factorized form

ˆ̃ρN(t1, t2, . . . , tN ; T ) = wN(t1, t2, . . . , tN )

∫
dφA gA(φA)|α(T )〉〈α(T )| (20)

where now the time-dependent value of the coherent-state parameter is given byα(T ) =
r exp[−iφA − (iω + �/2)T ]. The integral in (20) is the conditional density matrix after
N detections. Notice that this conditional density matrix is identical to the unconditioned
density matrix (12) in this special case. This is due to the fact that the detection probability
is independent of the phaseφA. This also implies that subsequent particle detections are
uncorrelated, so that the distribution (16) reduces to a Poisson distribution. The mean value of
the number of detections is̄N = ηr2(1 − e−�T ). The simplest example is an initial coherent
state|r exp(−iφ0)〉, so thatgA is effectively a delta function. Then the state remains a pure
state at all times, given by the coherent state|r exp(−iφ0 − iωT − �T/2)〉.

When the system is a Bose–Einstein condensate, states with different particle numbers
do not superpose, and the density matrix must be diagonal in the particle number. The initial
state is diagonal in the number of particles only when the phaseφA is uniformly distributed.
Hence in equations (12)–(16) we can make the replacement

∫
d2α P(α) → ∫

dφA/2π . The
time-dependent state (12) is then a Poissonian statistical mixture of number states.
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4. Decay of two boson modes

4.1. Two representations

Now we consider two independently decaying boson modesA andB. The combined density
matrix obeys the master equation

d

dt
ρ̂ = −iω[â†â, ρ̂] − 1

2
�(â†âρ̂ + ρ̂â†â) + �âρ̂â†

− iω[b̂†b̂, ρ̂2] − 1

2
�(b̂†b̂ρ̂ + ρ̂b̂†b̂) + �b̂ρ̂b̂†. (21)

When the density matrix ˆρ(0) at time 0 can be expressed as a product ˆρAρ̂B of terms
corresponding to the separate systems,also the combined Glauber–Sudarshan functionP(α, β)

can be written as a productPA(α)PB(β). Then the state of the modes is unentangled. Since
the two modes evolve independently, the time-dependent solution of the master equation (21)
is just the product of two solutions of the form (12). Hence, the two modes remain uncorrelated
at all times. Also when emitted particles are detected, while the products from both modes
are distinguishable, no entanglement can arise.

The situation is quite different, however, when the emitted bosons from the two modes
are observed in interference. Since it is undetermined whether the particle arose from modeA

or from modeB, entanglement can arise. The effect of a detection on the density matrix can
be described by the substitution

ρ̂(t) → ĉ(φ)ρ̂(t)ĉ(φ)† (22)

in terms of the detection operator

ĉ(φ) = 1√
2
(â + eiφb̂) (23)

that is the superposition of an annihilation of a particle from either of the two modes. After
detection of a particle as described by an operator of the form (23), the conditional density
matrix no longer factorizes. This is the basic mechanism for the creation of the relative
phase between two Bose–Einstein condensates when they are observed in interference [3, 13].
Spatial interference between two condensates has been observed in a number of experiments
[14, 15].

We assume that particles emitted from both sources are combined in a beam splitter and
detected at the two output ports. The setup is sketched in figure 1. Particle detection is
described by the two orthogonal detection operators

ĉ± = (â ± b̂)/
√

2. (24)

This same detection scheme has been analysed by Castin and Dalibard [3] in the case of
two condensates. The operators ˆc± obey the standard commutation rules [ ˆc±, ĉ†±] = 1,

[ĉ±, ĉ∓] = [ĉ±, ĉ†∓] = 0. The master equation (21) can be rewritten in terms of the operators
ĉ± rather than in terms of ˆa andb̂, with the result

d

dt
ρ̂ = −iω[ĉ†+ĉ+, ρ̂] − 1

2
�(ĉ

†
+ĉ+ρ̂ + ρ̂ĉ†+ĉ+) + �ĉ+ρ̂ĉ

†
+

− iω[ĉ†−ĉ−, ρ̂2] − 1

2
�(ĉ

†
−ĉ−ρ̂ + ρ̂ĉ†−ĉ−) + �ĉ−ρ̂ĉ†− ≡ Lρ̂. (25)

Since this is just a different form of the same equation, the solutions of (25) are identical to
those of (21). No entanglement can be created by the full evolution given by the right-hand
side of (25).
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BA

BS

D D+ _

Figure 1. Sketch of setup of two decaying modes. The outputs are mixed by a beam splitter BS
and particle detectors D+ and D− are attached to the output ports.

4.2. Detection-induced correlation

The result of a detection history can be described as a direct generalization of the one-
mode case discussed in section 3. A detection history is now described by specifying for
each detection within a time interval [0, T ] the time instant and the detection channel.
Just as in equation (2), we separate the evolution operator L in equation (25), with
L1ρ̂ = �(η+ĉ

†
+ρ̂ĉ+ + η−ĉ†−ρ̂ĉ−) ≡ L1+ + L1−, with η1 and η2 the two detection efficiencies.

These two terms describe two types of quantum jumps corresponding to the two detection
channels. We consider a factorized initial state in terms of the combined P-function as

ρ̂(0) =
∫

d2α d2β |α, β〉〈α, β|PA(α)PB(β) (26)

where |α, β〉 denote two-mode coherent states. These states are eigenfunctions of â and
b̂, and therefore also of ĉ±. The eigenvalue relations are ĉ±|α, β〉 = γ±|α, β〉, with
γ± = (α ± β)/

√
2. Therefore, the variables γ± in equations (27) and (28) are functions

of α and β. Now it is easy to evaluate the contribution to the time-dependent density matrix
corresponding to zero detections in the interval [0, T ], and the result is

ˆ̃ρ0(T ) ≡ eL0T ρ̂(0) =
∫

d2α d2β |α(T ), β(T )〉〈α(T ), β(T )|
×PA(α)PB(β) exp(−(η+|γ+|2 + η−|γ−|2)(1 − e−�T )). (27)

The time dependence of the coherent states |α(T ), β(T )〉 is the same as defined in section 3.
The probability for zero detections is the trace of (27), so that

p0(T ) =
∫

d2α d2βPA(α)PB(β) exp(−(η+|γ+|2 + η−|γ−|2)(1 − e−�T )). (28)

When the two efficiencies η± are unequal and the distributions PA and PB have a finite width,
the last line in (27) does not factorize in the variablesα and β. This indicates that entanglement
has been created by the simple fact that a detection experiment has been performed with a
null outcome. This is particularly obvious when a detector is attached only to the output port
D+. Then after an interval with zero detection, the entangled state is described by the ratio
of equation (27) and (28), with the substitution η− = 0. This situation is reminiscent of a
measurement scheme discussed by Plenio et al [16]. Here an entangled subradiant state of
two atoms is created by a null result of a photon measurement leaking out of a cavity.

A detection history is specified as t1, s1; t2, s2; . . . ; tN , sN , with ti the time instant and
si = D± the channel of the ith detection. Each detection tends to enhance the entanglement
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between the two modes, even though they share no common past. This will be illustrated in
an exactly solvable special case in section 5.

5. Initial states with Poisson particle statistics

In analogy to what we did in section 3.2 for one boson mode, we now assume that the initial
state of each subsystem is characterized by P-functions that are non-zero only for the single
value |α| = |β| = r , while the efficiencies η+ = η− = η are equal. Hence, the initial
state is fully symmetric. Setting α = r exp(−iφA), β = r exp(−iφB), one notices that
the integrations effectively extend only over the phases weighed by a factorized two-phase
distribution gA(φA)gB(φB). The solution of the master equation (21) (or (25)) is then

ρ̂(T ) =
∫

dφA dφB |α(T ), β(T )〉〈α(T ), β(T )|gA(φA)gB(φB). (29)

Formally, by iterating equation (3), this density matrix can be unraveled into a summation and
integration over all possible detection histories. A detection at the output ports D± gives rise
to a multiplicative factor proportional to |γ+|2 = 2r2 cos2(φ/2), or |γ−|2 = 2r2 sin2(φ/2),
with φ = φA − φB the relative phase between the two modes. For the contribution to the
density matrix corresponding to a given detection history we find

ˆ̃ρN(t1, s1; t2, s2; . . . ; tN , sN ; T ) = exp(−2ηr2(1 − e−�T ))

×
n∏
i=1

(2�ηr2e−�ti )
∫

dφA dφB |α(T ), β(T )〉〈α(T ), β(T )|

×gA(φA)gB(φB) cos2n(φ/2) sin2m(φ/2). (30)

Here n and m are the number of detections in each channel, so that n + m = N is the total
number. This effect reflects the change of the state at a quantum measurement. The trace
of (30) gives the distribution function for the indicated detection history, with the factorized
expression

wN(t1, s1; t2, s2; . . . ; tN , sN ; T )

= F(n,m) exp(−2ηr2(1 − e−�T ))
n∏
i=1

(2�ηr2e−�ti ). (31)

This is the probability distribution for precisely N detections in the interval [0, T ] at the
indicated instants of time ti and the indicated detection channels si = D±. The information
on the distribution over the two detection channels is contained in the coefficientsF(n,m). The
remaining r-dependent factor represents the probability distribution for precisely N detections,
summed over both detection channels. This expression is quite similar to equation (19) for
the N-fold distribution function of a single decaying mode, the only difference being that now
the detection rate is doubled compared to the single-mode case. The statistics of the total
number of detections is given by a Poisson distribution, with mean value 2ηr2(1 − e−�T ).
The coefficients F(n,m) are defined as

F(n,m) =
∫

dφ g(φ) cos2n(φ/2) sin2m(φ/2) (32)

with g(φ) = ∫
dφB gA(φB + φ)gB(φB) the normalized distribution function over the relative

phase φ in the initial state. The coefficient F(n,m) represents the probability that the N
detections occur in an ordered sequence s1, s2, . . . , sN over the two detection channels D±,
with precisely n detections in the channel D+ and m = N − n detections in the channel D−.
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Obviously, the detection statistics depends only on the initial distribution of the relative phase
φ, not on the absolute phases of the two modes, nor on their population. More importantly,
this probability depends only on the total number of detections (n and m) in each channel, not
on their time order. This makes it easy to obtain the probability distribution for the possible
partitions (n,m) over the two detection channels, with m = N − n. Since for given n and m
the total number of time orderings of the N detections is a binomial coefficient, we find the
expression for the probability that n out of the N detections occurred in the channelD+,

p(n,m) =
(
N

n

)
F(n,m). (33)

For a given value of N, these probabilities indeed add up to one. Naturally, the specific values
of the coefficients F(n,m) and the probabilities p(n,m) depend on the initial distribution
g(φ) of the relative phase. In order to evaluate these quantities, it is convenient to introduce
the branching ratios f±(n,m), defined as the probabilities that after a detection history with n
and m particles in the two output channels, the next detected particle is found in the channel
D±. From the significance of the coefficients F(n,m) it is obvious that

f+(n,m) = F(n + 1,m)

F (n,m)
f−(n,m) = F(n,m + 1)

F (n,m)
. (34)

These ratios obey the sum rule f+(n,m)+f−(n,m) = 1. The values of these branching ratios
depend exclusively on the distribution function g(φ) over the relative phase that specifies
the initial state. Once the branching ratios have been calculated, the definition (34) shows
that the coefficients F(n,m) can be written as a product of branching ratios corresponding to
the sequence of detections of particles. The fact that the resulting product does not depend
on the specific order of the detections restricts the possible values of the branching ratios.
For instance, they must obey the identity f+(n,m)f−(n + 1,m) = f−(n,m)f+(n,m + 1) =
F(n + 1,m + 1)/F (n,m). In fact, a moment’s reflection reveals that knowledge of the ratios
f+(n, 0) for all values of n is sufficient to evaluate all branching ratios, and thereby all the
coefficients F(n,m). Mathematically, this is equivalent to saying that these branching ratios
are sufficient for reproducing the relative phase distribution g(φ).

The normalized conditional density matrix, given a detection history (n0,m0) in both
output channels, is given by

ρ̂(n0,m0; T ) =
∫

dφA dφB |α(T ), β(T )〉〈α(T ), β(T )|
× gA(φA)gB(φB) cos2n0(φ/2) sin2m0(φ/2)/F (n0,m0). (35)

It is equal to the ratio of (30) and (31), it is fully specified by the detection numbers n0 and
m0 and it does not depend on the instants or the ordering of the detections. Equation (35)
shows as the effect of each detection that the combined P distribution function is multiplied
by cos2(φ/2) or sin2(φ/2), apart from normalization.

Knowledge of the coefficients F(n,m) also allows us to derive expressions for the
conditional statistics of the number of detections, following a given initial number of n0
and m0 detections in the two channels. Since F(n,m) represents the probability for a specific
order of the detections, the conditional probability that the next N detections follow a specific
sequence s1, s2, . . . , sN is given by

F(n,m | n0,m0) = F(n0 + n,m0 +m) | F(n0,m0) (36)

which again depends only on the partition (n,m) of the conditional sequence. For the
conditional probability distribution over the partitions we thus find
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p(n,m | n0,m0) =
(
N

n

)
F(n0 + n,m0 +m)/F(n0,m0). (37)

These same expressions follow from the conditional density matrix (35) as the initial state.

6. Special cases

6.1. Initial coherent states

A trivial special case of section (5) arises when both modes are in a coherent state. Then the
phase distribution function g(φ) = δ(φ−φ0) with φ0 the difference of the phases of α and β.
This is a natural situation when the particles are photons leaking out of cavities. However, for
Bose condensates, this initial state is not possible, since it is not diagonal in the total number
of particles. In this case, the branching ratios (34) are f+ = cos2(φ0/2) and f− = sin2(φ0/2)
for all values of n and m. The distribution (33) over the two channels is binomial, with average
numbers of detections N cos2(φ/2) and N sin2(φ/2) in both channels. When the phase
difference is φ0 = π/2, the branching ratios are equal to 1/2 and the probability distribution
(33) over the channels is

p(n,m) = 1

2N

(
N

n

)
(38)

just as the conditional distribution (37). Likewise, the conditional density matrix (35) after
(n,m) detections is equal to the unconditioned density matrix (29), so that the density
matrix is not affected by the detection. The measurement process is highly classical, and
no entanglement is created. The average value is n̄ = N/2 and the standard deviation is
equal to �n = √

N/2. In the limit of large detection numbers N, the distribution (38) is
well approximated by a Gaussian, specified by these numbers. Hence, the relative width
decreases with N. The conditional density matrix given a certain detection history is identical
to the unconditioned solution of the master equation (21), which represents a product of two
coherent states at all times.

6.2. Initial uniform phase distribution

The opposite extreme case occurs when the initial phase distributions of both modes are
completely uniform. Then initially both modes are diagonal in the number states, with a
Poissonian distribution. The unconditional state that solves the master equation is given by
(29), with gA = gB = 1/2π . This state is unentangled and diagonal in the number state of
both modes at all times. This uniform-phase state has been considered for the analysis of the
buildup of a fixed relative phase between two Bose condensates in a continuous measurement
[13]. In fact, the detection statistics depends only on the distribution function of the relative
phase, which is also uniform, so that g(φ) = 1/2π . Initially, there is no preference for either
channel, and the two branching ratios f+(0, 0) = f−(0, 0) = 1/2 are equal. However, after
a number of detections, a preference is created for the channel that had already the most
detections. This effect has been discussed for Bose condensates starting from initial number
states in the limit of large numbers [3]. Here we derive exact expressions for the statistical
distribution, while accounting for the limited detection efficiency, and the decay of the modes
during the detection interval.

From the definition (34) of f+, it is easy to show for the case of a uniform phase distribution
that f+(n, 0) = (2n+ 1)/(2n+ 2). Furthermore, we have argued that the product of branching
ratios along a detection sequence depends only on the initial and final values of (n,m), not on
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the specific sequence. Together with the sum rule f+ +f− = 1, this allows us to obtain simple
exact expressions for the branching ratios

f+(n,m) = 2n + 1

2(N + 1)
f−(n,m) = 2m + 1

2(N + 1)
(39)

with N = n +m. This yields exact expressions for the coefficients F in the form

F(n,m) = (2n)!(2m)!

22NN!n!m!
. (40)

This leads in turn to the exact result for the probability distribution (33) of N detected particles
over the two channels,

p(n,m) = 1

22N

(
2n

n

)(
2m

m

)
. (41)

Whereas the binomial distribution (38) has maximal values for n = m = N/2, the distribution
(41) is maximal for n = 0 or m = 0, so that the detected particles tend to bunch in one
channel. Hence the detection histories bifurcate into sequences with practically all detections
in the same output channel. For these most probable detection histories, with most particles
in one channel, the phase distribution becomes very narrow. The conditional density matrix
after a detection sequence (n,m) with n � m (or n � m) is given by equation (35), which
contains a phase-dependent function that strongly peaks at φ = 0 (or at φ = π). This state is
highly entangled, provided that the remaining number of particles per mode r2 exp(−�T ) is
still appreciable. This illustrates the strong correlation between successive detections.

For large particle numbers, the distribution (41) can be represented by a simple continuous
approximation. From the Gaussian limit of the binomial distribution one finds that the binomial
coefficients occurring in (41) can be approximated by(

2n

n

)
≈ 22n 1√

πn
. (42)

In the limit of large N values, the distribution (41) is therefore well represented by the
continuous normalized distribution

q(ν) = 1/π
√
ν(1 − ν) (43)

over the range 0 � ν � 1 of the variable ν = n/N . The variable ν and the complementary
variableµ = m/N = 1−ν determine the number of detections in the two output channels. The
average value and the standard deviation of ν can be directly evaluated after the substitution
ν = cos2(φ/2), with the result

ν̄ = 1

2
�ν = 1

2
√

2
(44)

which confirms that the standard deviation of n is of the order of the total number of particles
N.

This limiting distribution (43) can also be understood geometrically by considering
the situation that two fields with amplitudes proportional to a = exp(−iφA)/2 and
b= exp(−iφB)/2 enter the input port of the beam splitter. The amplitudes of the two output
channels are then proportional to the sum and difference of these fields, which corresponds to
intensities proportional to ν = cos2(φ/2) andµ = sin2(φ/2). A uniform distribution over the
relative phase φ = φA − φB reproduces the distribution q(ν). This is illustrated in figure 2.

While during the detection history, the distribution over the relative phase φ becomes very
narrow, the phases φA and φB of the two modes remain completely undetermined. Conversely,
the state remains diagonal in the total particle number in the two modes, whereas the difference
in particle number in both modes becomes undetermined. This can be seen explicitly from
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b

a
φ

Figure 2. Geometrical picture of distribution of relative intensity ν. The lengths of the dotted lines
determine the intensities ν = |a + b|2 and µ = |a − b|2. A uniform distribution over the relative
phase φ reproduces the distribution (43) over ν.

the expression (35), in the special case that gA and gB are uniform, and n0 � m0, so that the
distribution for the relative phase φ strongly peaks at the value 0.

7. Conclusions and discussion

We have obtained exact expressions for the conditional density matrix of two decaying boson
systems when the decay products are brought into interference by a beam splitter. The
expressions become particularly simple when the initial states are diagonal in the number
states, with a Poisson distribution. In this case, the total decay summed over both output
channels is an autonomous process which is not affected by the quantum measurement. On
the other hand, the distribution over the relative phase is completely determined by the specific
detection history and the statistics of the detected particles in both channels can be completely
solved. This is illustrated in equation (34) for the branching ratios for the next detection
and in equation (35) for the conditional density matrix, following a detection history with n
particles in the channel D+ and m particles in the channel D−. The description is equally
valid for photons leaking from cavities, or for bosonic atoms leaking from two condensates.
In either case, the model illustrates the spontaneous buildup of the relative phase during the
decay process. For bosonic atoms, no off-diagonality in the total number of particles can exist
for initially isolated systems, and then it cannot arise during the decay process either. This
means that the phase of each subsystem separately must remain completely undetermined,
even when the relative phase attains a specific value. This implies that the states of the systems
get entangled, even though they have never been in contact directly.

For an initially uniform distribution of the relative phase, the probability distribution of
the detected particles over the two channels can be solved exactly, and the result is given in
equation (41). Since this probability distribution is normalized, we obtain as a byproduct the
sum rule for binomial coefficients,

N∑
n=0

(
2n

n

)(
2(N − n)

N − n

)
= 22N. (45)

This distribution expresses strong correlations between successive detections. An accidental
asymmetry between the two channels tends to be amplified as the detection history proceeds,
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leading to a well-defined relative phase. It is remarkable that no operator for the relative phase
enters the description [17]. In fact, the detection process is described by the operators c±, which
are special cases of the phase-dependent superposition operator (23). It has been pointed out
that states with maximum visibility in interference experiments based on such field operators
are the eigenstates of the effective number operator c†(φ)c(φ) [18]. It is therefore significant
that after a detection history the conditional density matrix becomes diagonal in the eigenstates
of c†+c+ and c†−c−. A detection history can be considered as a quantum measurement of these
particle numbers, which forces the state into the corresponding eigenstates.
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